91尻逼视频 I 欧美在线亚洲 I 亚洲人成色77777 I 成人性视频欧美一区二区三区 I 性色av一区 I 99re这里只有精品视频在线观看 I 亚欧毛片 I 韩国精品三级bd I 久操欧美 I 久久久久无码中 I 91久久国产涩涩涩涩涩涩 I 欧美三级香港三级日本三级 I 一区二区三区视频免费看 I 青青草伊人 I 亚洲美女网站 I 女人大p毛片女人大p毛片 I 亚洲一二三区av I 女人做爰视频偷拍 I 蜜臀久久99精品久久久 I 日韩激情三级 I 韩国午夜福利片在线观看 I 亚洲国产精品电影人久久 I 91九色国产蝌蚪 I 黄色www. I 久久久思思 I 婷婷色在线 I 亚洲三级黄色 I 亚洲熟女综合色一区二区三区 I 黄色动漫av I 色香阁综合无码国产在线 I 国产学生不戴套在线看 I 日韩高清av一区二区三区 I 漫画无翼乌羞羞漫画 I 欧洲中文字幕精品 I 欧美xxxx综合视频

Service Hotline

400-9619-700

Index >>

Jeff McClanahan on taking a systems approach to control panels to solve electrification challenges

13 Mar,2024

2.png

Industrial organisations can push decarbonisation forward by shifting process heater systems from fossil fuel-burning to electric. This kind of electrification needs to be done with a systems approach in mind – by considering the entire thermal loop. Of all the components needed to switch to electric, control panels are one of the most important. For large-scale applications, control panels need to be designed to maximise reliability, accessibility and safety. Here, we explore why systems approach thinking is key in the manufacturing of components for electrification.

The question of electrification is less of an if or a when, and instead how. Globally, companies are prioritising the reduction of their carbon footprint. There is a huge push across different industries to “go electric” as part of a larger programme of decarbonisation. But the details for doing so can be elusive. It’s not as easy as swapping out gas-fired heaters for electric heaters, for example, without also considering the size, location and connectivity of the control panel that will regulate those electric heaters. These considerations will, in turn, have a bearing on how and when the system needs to be maintained, how long downtime lasts and what the prospects are for future expansion.

The point of a systems approach is to take a step back, seeing how different design considerations an impact on the system and process might have as a whole, rather than focusing on the functioning or replacement of a single part. A systems approach also has an impact on the business aspects of an industrial process, as it encourages engineers to consider the total cost of ownership when comparing different options.

Meeting challenges at scale

Taking a systems approach to process heating was a foundational consideration behind the design of Watlow’s L and XL Watconnect control panels. Here, we take a deeper look at what went into that design as a way of illustrating the power of this kind of thinking.

A systems approach means finding not just one or two solutions to meet a challenge, but finding as many solutions as possible to optimise a given outcome. Take reliability, for example. What are all of the different ways a system can be optimised to ensure near 100% uptime? One way this was done in the design of the Watconnect panels was by looking at the thermal design of the system. All systems generate some heat, and excess heat is the nemesis of electronics. Therefore, optimising the system to keep heat under control is critical.

Watlow’s design looked at adding to the insulation of the system, reducing power where possible, and improving the airflow throughout the system. Airflow itself was improved by using high-reliability EC inlet and outlet fans with advanced monitoring, which provide up to twice the airflow compared to industry standard fans. Therefore, by better controlling waste heat within the panel, Watlow can extend the life of the electronic components and significantly increase reliability.

Other design considerations include accessibility options. A smaller panel door in the unit provides access to 90% of the system while still shielding the user from high-voltage components. This allows a person to troubleshoot the system while running, and without the safety concerns that come from opening the panel while “hot.” This also ensures longer uptime, as the panel does not necessarily need to be shut down for investigating smaller issues. The panels are also designed with solid copper internal power interconnect for less expansion and contraction. This is especially important at high-resistance junctions, because the more this component heats up when made from an alternative to copper, the higher the risk of failure.

Lastly, although the panels are categorised as large, they use only 50% of the space that competitive panels require. This can make it easier to install the panels when space is limited. Or, if replacing current equipment, the savings potentially frees up space for other critical equipment, allowing for future expansion.

Industrial organisations can push decarbonisation forward by shifting process heater systems from fossil fuel-burning to electric. But this is not a simple swap-out. A systems approach must be taken to consider how individual components will affect the entire system.

Although control panel technology is nothing new, there are fresh new challenges that come with building control panels for large-scale applications. To be effective in solving electrification challenges, these control panels need to be designed to maximise reliability, accessibility, safety and provide a smaller footprint.