91尻逼视频 I 欧美在线亚洲 I 亚洲人成色77777 I 成人性视频欧美一区二区三区 I 性色av一区 I 99re这里只有精品视频在线观看 I 亚欧毛片 I 韩国精品三级bd I 久操欧美 I 久久久久无码中 I 91久久国产涩涩涩涩涩涩 I 欧美三级香港三级日本三级 I 一区二区三区视频免费看 I 青青草伊人 I 亚洲美女网站 I 女人大p毛片女人大p毛片 I 亚洲一二三区av I 女人做爰视频偷拍 I 蜜臀久久99精品久久久 I 日韩激情三级 I 韩国午夜福利片在线观看 I 亚洲国产精品电影人久久 I 91九色国产蝌蚪 I 黄色www. I 久久久思思 I 婷婷色在线 I 亚洲三级黄色 I 亚洲熟女综合色一区二区三区 I 黄色动漫av I 色香阁综合无码国产在线 I 国产学生不戴套在线看 I 日韩高清av一区二区三区 I 漫画无翼乌羞羞漫画 I 欧洲中文字幕精品 I 欧美xxxx综合视频

Service Hotline

400-9619-700

Index >>

Sulzer Examines Cost-Effective Solutions for Pumps and Mixers

22 May,2023

1.png

Pumping systems are responsible for over 20 percent of the world’s electrical energy demand, and in some industrial plant operations, they can account for up to 90 percent of energy usage. Improving the energy efficiency of pumping and mixing systems is crucial in reducing production costs and supporting a more sustainable future. Several options can be available and with energy prices reaching new heights, the return on investment is rapidly reducing.

Saku Vanhala, head of product management at Sulzer, looks at how equipment operators can make positive changes to improve efficiency and help to meet corporate goals in sustainability.

Energy efficiency is becoming increasingly important in industry applications due to rising energy costs. Improving pump and agitator performance can result in substantial savings, both in terms of reducing energy consumption and operational costs. The key to improving energy efficiency is matching the design of the pump, installation, process conditions, and operation to each other and taking into account any changes to process parameters that may have occurred over time.

Huge saving potential

With increasing demand, combined with global price rises, energy usage and how to reduce it, is rapidly becoming a priority for all countries. Among several initiatives, many governments are also supporting businesses with grants to upgrade equipment to more energy-efficient alternatives, to help reduce demand on national power grids.

Pump operators should have access to pump data and performance curves, which can be used to calculate current efficiency levels and identify areas for improvement. An expert appraisal of the pump can also provide information on the remaining service life of the pump and help make an informed decision on the best course of action to improve performance.

The most significant savings in energy consumption can be achieved by selecting the most appropriate pump technology for the application and optimizing the pump size. Using variable speed drives (VSDs) can also improve efficiency, allowing the rotational speed of the pump to be adjusted for optimal performance. Considering the use of control valves can also result in significant energy savings.

Retrofit improvements

For larger pumps, retrofitting is often the most cost-effective method of improving performance. This can involve modifying the impellers to optimize hydraulic performance, enabling the pump to operate at the best efficiency point (BEP). For smaller pumps, it may be more cost-effective to replace existing assets with modern, more efficient, and reliable equivalents.

Aside from the pumps, agitators and mixers are used in many industrial processes and can be overlooked in terms of the potential savings they can achieve by optimizing their performance. All too often, they can be over-specified or operated beyond the point where optimal mixing has been achieved. In these situations, energy can be saved and operating costs reduced.

In combination with its industry leading pump designs, Sulzer also has a wide range of highly efficient mixers and agitators. Even better, the latest designs of SALOMIX propellers can be retrofitted to older models to improve hydraulic efficiency, reducing running costs. Depending on the application, replacing the MX4 propeller with the new, high-efficiency EX3 propeller can save up to 20 percent in power consumption.

Savings through digital solutions

In addition to upgrading existing equipment, further savings can be achieved by introducing intelligent process control and optimization tools. Wireless sensors that are attached to a pump, agitator, motor, or any rotating equipment can measure temperature and vibration and send the data to the cloud. This enables the operating status of the equipment to be remotely monitored 24/7 and planned maintenance to be scheduled more accurately.

It is also important to look beyond the equipment and focus on the pipework and control valves as well. It is often the case that valves have been used to throttle flow from a pump to suit the process. This means that energy is being wasted all the time that the pump is operating. Improving the pipework layout and flow control devices surrounding the pump can make significant reductions in energy consumption.

With rising energy costs, the priorities of the key performance indicators (KPIs) within a company may need to change. Existing equipment should be assessed for efficiency and reliability, with options to achieve the best improvements. Buying decisions need to be based on the long-term savings that can be achieved and the time in which the investment will be recovered. If the focus throughout the business is targeted on improving energy efficiency, then major savings can be achieved while also meeting corporate goals in sustainability.